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Abstract 
Software Reliability is a key concern of many users and 
developers of software. Demand for high software 
reliability requires robust modeling techniques for 
software quality prediction. Software reliability models 
are very useful to estimate the probability of the software 
fail along the time. Several different models have been 
proposed to predict the software reliability growth model 
(SRGM); however, none of them has proven to perform 
well considering different project characteristics. The 
ability to predict the number of faults in the software 
during development and testing processes. In this paper, 
we explore connectionist artificial neural networks models 
as an alternative approach to derive these models by 
investigating the performance analysis of four different 
connectionist paradigms for modeling the software 
reliability prediction. The presented four paradigms are 
multi-layer perceptron neural network, radial-basis 
functions, Elman recurrent neural networks and a Takagi-
Sugeno fuzzy inference system learned using a neural 
network algorithm (neuro-fuzzy model). The results show 
that the neural network model adopted has good predictive 
capability. 
 
Keywords: Neural Network, Software Quality, Software 
Reliability, and Time-Series Prediction 
 

1. Introduction  
Software reliability is becoming more and more important 
in software industry various techniques are required to 
discover faults in the development of software. Software 
reliability can defined as the probability of a software 
system to perform its specified functions correctly over a 
long period of time or for different input set under the 
usage environments similar to that of its target customer 
[22]. However; as reliability of software is measured in 
terms of failure it is impossible to measure reliability 
before the software is developed completely, software 
reliability is the most extensively studied quality among 
all the quality attributes [17]. 
 
In the past few years a number of software reliability 
assessment models have been developed to solve software 

reliability models. These software models have been 
developed in response to the urgent need for software 
engineers, system engineers and managers to quantify the 
concept of software quality prediction. The information 
provided by the models is helpful in making management 
decisions on issues regarding the software reliability. The 
software reliability models can be grouped into two 
categories: 
 

1. Analytical software reliability growth models 
(SRGM) and; 

2. Data-driven models.  
 
The analytical SRGMs use stochastic models to describe 
the software failure process under several assumptions to 
provide mathematical tractability [9]. The major 
drawbacks of these models are their restrictive 
assumptions. On the other hand, most data-driven models 
follow the approach of time series analysis, including 
traditional autoregressive methods [1, 5, 14, 20] and 
modern artificial neural network (ANN) techniques [12], 
Case based reasoning, and optimal set reduction and 
genetic algorithms [7, 2, 16]. These models are developed 
from past software failure history data. The main objective 
of these models are to help predict which modules are 
error prone which in turn can help developer to focus on 
many aspects of maintenance cycle [3, 4]. The 
connectionist neural networks are excellent forecasting 
tools and can learn from scratch by adjusting the 
interconnections between layers. It contains many models 
and learning algorithms offer excellent learning capability 
based on statistical learning theory [1, 13]. Moreover, 
fuzzy inference systems are excellent for decision making 
under uncertainty can be integrated within this framework 
to get the neuro-fuzzy model which is used to fine-tune 
the parameters of fuzzy inference systems [1]. 
 
The purpose of this paper is to investigate the performance 
analysis of four different connectionist paradigms for 
modeling the software reliability prediction. The four 
different techniques considered are multi-layer perceptron 
neural network trained using the back-propagation, radial-
basis functions, Elman recurrent neural networks and a 
Takagi-Sugeno fuzzy inference system learned using a 
neural network algorithm (neuro-fuzzy model). 
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The rest of the paper is organized in the following manner. 
Section 2, presents an overview of the different 
connectionist models and their learning methodologies. In 
section 3, the data set used in this study is described 
briefly. In section 4, we provide an experimental setup and 
performance evaluation. Detailed experiments results are 
provided in section 5. Finally, section 6 concludes the 
paper. 

2. Connectionist Predicting Models 
In the past three decades, hundreds of models were 
introduced to estimate the reliability of software systems. 
The issue of building growth models was the subject of 
many research works which helps in estimating the 
reliability of a software system before its release to the 
market. There are appearing two major trends in software 
reliability research: the use of analytical software 
reliability growth models (SRGM) and data-driven 
models. In this paper, the data-driven models using 
connectionist models. The connectionist models “learn” 
by adjusting the interconnections between layers. When 
the network is adequately trained, it is able to generalize 
relevant output for a set of input data. Learning typically 
occurs by example through training, where the training 
algorithm iteratively adjusts the connection weights 
(synapses). In an artificial neural network learning occurs 
by the iterative updating of connection weights using 
learning algorithms. The ANN methodology enables us to 
design useful nonlinear systems accepting large numbers 
of inputs, with the design based solely on instances of 
input-output relationships. For a training set T  consisting 
of n  argument value pairs and given a d -dimensional 
argument x  and an associated target value t  will be 
approximated by the neural network output. The function 
approximation could be represented as 
 

TXg →: (1) 
In most applications the training set T  is considered to be 
noisy and our goal is not to reproduce it exactly but rather 
to construct a network function that generalizes well to 
new function values. We will try to address the problem of 
selecting the weights to learn the training set. The notion 
of closeness on the training set T  is typically formalized 
through an error function of the form 
 

( )∑
=

−=
n

i
ii tyE

1

2  (2) 

 
where iy  is the network output. 

 

2.1 Multi-Layer Perceptron 
A multilayer perceptron (MLP) is shown in Figure 1 is the 
most widely used feed-forward neural networks and one 
of the most popular training algorithms for feed-forward 
neural networks is the back-propagation algorithm. The 
back-propagation learning algorithm is developed for 
multilayer perceptrons is a form of gradient descent. As 
such, it is vulnerable to local minima in weight space. A 
number of techniques for forcing back-propagation 
networks out of a local minimum have been proposed in 
the literature. One of the simplest is adding a momentum 

term to the back-propagation formula, which adds an 
additional vector to the current weight update. Other 
schemes include the Newton's method, or conjugate 
gradient algorithms [8]. As shown in Figure 1, the feed-
forward neural network architecture consists of a number 
of elements called neurons. These neurons are grouped 
together to form a layer. Each neuron has a number of 
inputs and a single output. Each input has an assigned 
factor or parameter called the weight.  
 
 

Figure 1, the multi-layer perceptron neural networks structure 

 
The back-propagation training algorithm is an iterative 
gradient descent algorithm designed to minimize the mean 
square error E  between the actual output of a multilayer 
feed forward perceptron and the desired output and 
updates the weights by moving them along the gradient-
descendent direction. This can be summarized with the 
expression 
 

Ew ∇−=Δ η  (3) 
 
where the parameter 0>η is the learning rate that controls 
the learning speed. From Equation (3) it is clear that the 
error function to be minimized is a highly nonlinear high 
dimensional surface (the dimension given by the number 
of weights in the network) with possibly many local 
minima. Though a gradient descent algorithm is fast, it 
does not guarantee that the minimum found is the global 
one. 

 

2.2. Radial Basis Function Neural Network 
Radial Basis functions are used for strict interpolation in a 
multi dimensional space. Radial Basis networks [8, 6] 
typically have two distinct layers as shown in Figure 2. 
Each layer is fully connected to the following one and the 
hidden layer is composed of a number of nodes with radial 
activation functions called radial basis functions each of 
which is a function of the distance between an input 
pattern and a prototype pattern. Each of the input 
components feeds forward to the radial functions. The 
outputs of these functions are linearly combined with 
weights into the network output. Each radial function has 
a local response (opposite to the global response of 
sigmoid function) since their output only depends on the 
distance of the input from a center point. A standard 
choice of basis function is the Gaussian: 
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Figure 2. RBFN configuration 

 
where x is an input pattern, jφ  is a radial basis function 

centered at location jμ .The right layer is a simple linear 
discriminate that outputs a weighted sum of the basis 
functions. The equation for a single output ky  is: 
 

( ) ( ) 0
1

2

kj

J

j
kjk wxwxy +∑=

=
φ  (5) 

 
The hidden layer performs a nonlinear transform of the 
input, and the output layer is a linear combiner mapping 
the nonlinearity into a new space. The biases of the output 
layer neurons can be modeled by an additional neuron in 
the hidden layer, which has a constant activation 
function ( ) 1=xjφ . The degree of accuracy of these RBF 
networks can be controlled by three parameters: the 
number of basis functions used, their location and their 
width. The training of the RBF network is radically 
different from the classical training of standard MLP. In 
RBFN networks with the chosen type of radial basis 
function, training resolves itself into selecting the centers 
and dimensions of the functions and calculating the 
weights of the output neuron. The number of hidden layer 
neurons can be determined through iteratively adding 
neurons until the network error falls under a certain 
training error goal. Radial basis transfer functions by 
nature tend to cover a local portion of the input spectrum 
thus having better focus on local details. 

2.3. Elman Recurrent Neural Networks 
In feed-forward neural networks there are no feedbacks 
from the output of one layer to the inputs of the same 
layer (i.e. no interconnection between the nodes within the 
same layer) or earlier layers of nodes. Also, these 
networks have no memory (i.e. the input vector at any 
time instant determines the output, assuming the weights 
do not vary). A recurrent neural network is different from 
the feed-forward neural network because it has feedback 
connections. Similar to the use of feedback in control 
systems, recurrent neural networks take into consideration 
the dynamic behavior of systems. The output of a node at 

any time instant t depends on its inputs at time instant t 
and those feedback connections whose values are a time 
instant earlier ( )tt Δ− , where tΔ  is the sampling time. As 
the current output of the recurrent neural network depends 
on both current and prior inputs, recurrent networks 
function behave just like memories which have stored 
values. Elman neural network [8], is a partial recurrent 
network model which has a number of context nodes in 
the input layer as shown in Figure 3. The context nodes do 
nothing more than duplicate the activity of a hidden layer, 
at the previous time step, at the input of the network. The 
Elman network commonly is a two-layer network with 
feedback from the first-layer output to the first layer input. 
 

Figure 3. Structure of Elman recurrent neural network 

The advantage of Elman networks over fully recurrent 
networks is that back propagation [23] is used to train the 
network while this is not possible with other recurrent 
networks where the training algorithms are more complex 
and therefore slower. 

 

2.4 Fuzzy Neural Network 
Neuro-fuzzy models are hybrids of artificial neural 
networks and fuzzy logic. The adaptive network based 
fuzzy inference system (ANFIS) is a fuzzy inference 
system executed in an adaptive network and it can 
establish an input-output relation through the back-
propagation process with an artificial intelligence style (if-
then rules of fuzzy inference). ANFIS is a hybrid of two 
intelligent system models. It combines the low-level 
computational power of a neural network with the high-
level reasoning capability of a fuzzy inference system. In 
the aspect of modeling, ANFIS can easily establish non-
linear functions and it can forecast time sequence of no 
qualitative relations. The easiest way to understand how 
the ANFIS model operates is to consider it in two steps. 
First, the system is trained in a similar way to a neural 
network with a large set of input data. Then, once trained, 
the system operates exactly as a fuzzy expert system. The 
ANFIS are fuzzy Sugeno models put in the framework of 
adaptive systems to facilitate learning and adaptation [11]. 
Such framework makes such models systematic and less 
relying on expert knowledge. To describe the ANFIS 
architecture briefly, consider two fuzzy if-then rules based 
on a first order Sugeno model: 
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Rule 1: IF (x is A1) and (y is B1) THEN (f1 = p1 x +q1 y + r1) 
Rule 2: IF (x is A2) and (y is B2) THEN (f2 = p2 x +q2 y + r2) 
 
where x and y are inputs; Ai and Bi are appropriate fuzzy 
sets;  p1, q1, and r1 are certain parameters. f1 and f2  
contribute to the output of the system. The fuzzy inference 
system has, for example, two inputs, one output, five 
layers of framework (shown in Figure 4), and two learning 
stages. In the first layer (input layer), the input variables 
are mapped into fuzzy sets to estimate their degrees of 
membership by the designated membership functions. At 
the second layer (rule layer), the perquisite conditions of 
fuzzy logic rules are matched with input variables in order 
to obtain the weights, i.e., firing strength, of the rules 
which are the multiplication results of all inputs by using 
T-norm multiplication operation. At the normalization 
layer (the third layer), the relative ratios of weights of all 
rules are calculated for the nodes in this layer. Then, the 
relative weights are multiplied by the functions of factor 
sets at the conclusion inference layer (the fourth layer). At 
the last and fifth layer (output layer), all the information 
from the previous layer is aggregated to calculate output 
variable, just like the procedure of defuzzification. From 
the calculation of the five layers, it is clear that the 
function of ANFIS is similar to that of Sugeno model. 
 
 

Figure 4.The framework of adaptive network based fuzzy 
inference system (ANFIS). 

ANFIS learns using a hybrid learning algorithm 
combining a least-squares estimator and the gradient 
descent method [10]. Firstly, initial activation functions 
are randomly assigned to each neuron such that the range 
is spread across the domain of the input and the widths of 
the fuzzy sets are large enough to allow suitable overlap. 
Then the training begins and each epoch (training run) 
consists of a forward pass and a backward pass, updating 
the synaptic links according to the input data and desired 
result. The forward pass adjusts the neuron consequents, 
layer-by-layer, to minimize the error. Once it has reached 
the output of the last layer, the backward pass begins and 
the antecedents are updated as the consequents are held 
constant.  

3. Data Set 
The DACS Services at the Department of Defense 
(D.O.D.) Software Information Clearinghouse provides an 

authoritative source for the state of the art software 
information, supplying technical support for the software 
community. John Musa of Bell Telephone Laboratories 
compiled a software reliability database. His objective 
was to collect failure interval data to assist software 
managers in monitoring test status, predicting schedules 
and to assist software researchers in validating software 
reliability models [18]. These models are applied in the 
discipline of Software Reliability Engineering. The dataset 
consists of software failure data on 16 projects. Careful 
controls were employed during data collection to ensure 
that the data would be of high quality. The data was 
collected throughout the mid 1970s. It represents projects 
from a variety of applications including real time 
command and control, word processing, commercial, and 
military applications. In our paper, we used data from one 
project, the .Real-Time Control project. 

 

4. Experiment Setup 
4.1. Test/Debug data for Real-Time Control 
Observation of data for test/debug of a program for real-
time control was used. The size of the program is 870 
kilo-steps of FORTRAN and a middle level language. 
Since the test data is recorded day by day, the test 
operations performed in a day are regarded to be a test 
instance. The trainings accomplish for different models by 
dividing the data set into two sections, training and test 
sets, comprising of 70% and 30% of the total data set 
respectively. For real-time and control case study, we took 
the first 96 data points for training and the next 40 points 
for prediction/ validation of the developed model. 
 

4.2. Connectionist Models Structures 
We implemented the connectionist models using 
MATLAB where the architecture of the MLP neural 
networks used for software reliability prediction consists 
of an input layer, one hidden layer, and an output layer. 
The input layer contains a number of neurons equal to the 
number of delayed measurements allowed to build neural 
networks model. In our case, there are four inputs to the 
network, they are ( )1−ky , ( )2−ky , ( )3−ky , and 
( )4−ky . Where ( )1−ky the observed faults one-day is 

before the current day, the hidden layer consists of 4 
nodes. The output layer consists of one output neuron 
producing the estimated value of the fault. The hidden 
layer and output layer nodes have tanh-sigmoidal 
activation function and learning rate is 0.002. The structure 
of Elman network has the same architecture of MLP. 
Similarly, the RBFN has the same architecture with σ = 
4000 and hidden layer activation functions are Gaussian 
function and output layer nodes have linear activation 
functions. The structure of the ANFIS model consists of a 
Sugeno type fuzzy system with generalized bell input 
membership functions and a linear output membership 
function. The network consists of 4 inputs, each with 3 
input membership functions, 12 rules and 1 output 
membership function. The training for these models was 
terminated after 20 epochs. 
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5.3. Evaluation Criteria 
We used an evaluation criterion for each developed model 
to measure its performance. The criterion of evaluation 
(i.e. performance) to measure the performance of the 
developed connectionist model was defined as the sum of 
the square of the error: 
 

∑ −=
=

n

k
kyky

n 1

2))(~)((1RMSE  (6) 

 
Where )(ky  is the observed fault and )(~ ky  is the 
predicted fault for the given model structure and N  
represents the number of measurements used for 
estimating the model. 

5. Experimental Results 
This section demonstrated the results of the different 
connectionist learning algorithms runs, which explore 
various aspects of specification connectionist modeling 
methodology  For each learning algorithms run, the best  
model is evaluated over the training and test set using 
prediction performance measurements. The training data 
from real time control and their predicted results from 
different model are shown in Figure 5 and the predicted 
absolute error in Figure 6. The forecasted and actually 
measured values where compared to verify the generated 
models and their predictability and generalization 
capability in Table 1. 

Table 1- the comparison among different connectionist models 
for training/test data set 

 RMSE 
Training Data Test Data 

MLP 0.6061 0.6677 
RBFN 1.6465 0.1591 
Elman 0.1625 0.1394 
ANFIS 1.3364 0.9079 
 
As shown in Table 1, the recurrent network give the 
minimum error in training and test data set due taking into 
consideration the dynamic behavior of systems. The MLP 
model have less training error and high testing error in 
comparison with RBFN due its generalization capability. 
Finally, although, we have conducted several experiments, 
the ANFIS have the high training and test error with 
respect to other learning algorithms. Comparing their 
performance using the execution time of each method, we 
have found that the RBFN takes the minimum time and 
the ANFIS takes the maximum execution time. 

Table 2- the comparison of execution time among different 
connectionist models for training/test data set 

 Execution Time in Seconds 

MLP 2.14063 
RBFN 0.89062 
Elman 2.26563 
ANFIS 12.7344 
 

Figure 5: Actual and estimated faults for real time and control application for different models on training data set 
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Figure 6: Predicted absolute error for real time and control application training set. 

 

Figure 7: Actual and estimated faults for real time and control application for different models on testing data set 
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Figure 8: Predicted absolute error for real time and control application testing data set. 

 

6. Conclusions and Future Work 
In this paper, we demonstrate the results of utilizing the 
connectionist modeling and learning algorithms for 
prediction the software reliability. The demonstration 
includes a comparison of the four connectionist models 
with different leaning algorithms or structures. The Elman 
recurrent neural networks is a robust technique for 
function prediction due capturing the dynamic behavior of 
the data set. The preliminary computational results in the 
MATLAB environment seem quite promising and give 
insight into the generalization capability of these models.  
In the future work, we can explore other soft computing 
techniques and other different data set. 
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