

Employing four ANNs Paradigms for Software Reliability Prediction: an

Analytical Study

Sultan H. Aljahdali1 and Khalid A. Buragga2

1College of Computers and Information Systems, Taif University, Taif, Saudi Arabia
2College of Computer Sciences & I.T., King Faisal University, Hofuf, Saudi Arabia

Email: aljahdali@tu.edu.sa and kburagga@kfu.edu.sa

Abstract
Software Reliability is a key concern of many users and
developers of software. Demand for high software
reliability requires robust modeling techniques for
software quality prediction. Software reliability models
are very useful to estimate the probability of the software
fail along the time. Several different models have been
proposed to predict the software reliability growth model
(SRGM); however, none of them has proven to perform
well considering different project characteristics. The
ability to predict the number of faults in the software
during development and testing processes. In this paper,
we explore connectionist artificial neural networks models
as an alternative approach to derive these models by
investigating the performance analysis of four different
connectionist paradigms for modeling the software
reliability prediction. The presented four paradigms are
multi-layer perceptron neural network, radial-basis
functions, Elman recurrent neural networks and a Takagi-
Sugeno fuzzy inference system learned using a neural
network algorithm (neuro-fuzzy model). The results show
that the neural network model adopted has good predictive
capability.

Keywords: Neural Network, Software Quality, Software
Reliability, and Time-Series Prediction

1. Introduction
Software reliability is becoming more and more important
in software industry various techniques are required to
discover faults in the development of software. Software
reliability can defined as the probability of a software
system to perform its specified functions correctly over a
long period of time or for different input set under the
usage environments similar to that of its target customer
[22]. However; as reliability of software is measured in
terms of failure it is impossible to measure reliability
before the software is developed completely, software
reliability is the most extensively studied quality among
all the quality attributes [17].

In the past few years a number of software reliability
assessment models have been developed to solve software

reliability models. These software models have been
developed in response to the urgent need for software
engineers, system engineers and managers to quantify the
concept of software quality prediction. The information
provided by the models is helpful in making management
decisions on issues regarding the software reliability. The
software reliability models can be grouped into two
categories:

1. Analytical software reliability growth models
(SRGM) and;

2. Data-driven models.

The analytical SRGMs use stochastic models to describe
the software failure process under several assumptions to
provide mathematical tractability [9]. The major
drawbacks of these models are their restrictive
assumptions. On the other hand, most data-driven models
follow the approach of time series analysis, including
traditional autoregressive methods [1, 5, 14, 20] and
modern artificial neural network (ANN) techniques [12],
Case based reasoning, and optimal set reduction and
genetic algorithms [7, 2, 16]. These models are developed
from past software failure history data. The main objective
of these models are to help predict which modules are
error prone which in turn can help developer to focus on
many aspects of maintenance cycle [3, 4]. The
connectionist neural networks are excellent forecasting
tools and can learn from scratch by adjusting the
interconnections between layers. It contains many models
and learning algorithms offer excellent learning capability
based on statistical learning theory [1, 13]. Moreover,
fuzzy inference systems are excellent for decision making
under uncertainty can be integrated within this framework
to get the neuro-fuzzy model which is used to fine-tune
the parameters of fuzzy inference systems [1].

The purpose of this paper is to investigate the performance
analysis of four different connectionist paradigms for
modeling the software reliability prediction. The four
different techniques considered are multi-layer perceptron
neural network trained using the back-propagation, radial-
basis functions, Elman recurrent neural networks and a
Takagi-Sugeno fuzzy inference system learned using a
neural network algorithm (neuro-fuzzy model).

ICGST-AIML Journal, ISSN: 1687-4846, Volume 8, Issue II, September 2008

1

The rest of the paper is organized in the following manner.
Section 2, presents an overview of the different
connectionist models and their learning methodologies. In
section 3, the data set used in this study is described
briefly. In section 4, we provide an experimental setup and
performance evaluation. Detailed experiments results are
provided in section 5. Finally, section 6 concludes the
paper.

2. Connectionist Predicting Models
In the past three decades, hundreds of models were
introduced to estimate the reliability of software systems.
The issue of building growth models was the subject of
many research works which helps in estimating the
reliability of a software system before its release to the
market. There are appearing two major trends in software
reliability research: the use of analytical software
reliability growth models (SRGM) and data-driven
models. In this paper, the data-driven models using
connectionist models. The connectionist models “learn”
by adjusting the interconnections between layers. When
the network is adequately trained, it is able to generalize
relevant output for a set of input data. Learning typically
occurs by example through training, where the training
algorithm iteratively adjusts the connection weights
(synapses). In an artificial neural network learning occurs
by the iterative updating of connection weights using
learning algorithms. The ANN methodology enables us to
design useful nonlinear systems accepting large numbers
of inputs, with the design based solely on instances of
input-output relationships. For a training set T consisting
of n argument value pairs and given a d -dimensional
argument x and an associated target value t will be
approximated by the neural network output. The function
approximation could be represented as

TXg →: (1)
In most applications the training set T is considered to be
noisy and our goal is not to reproduce it exactly but rather
to construct a network function that generalizes well to
new function values. We will try to address the problem of
selecting the weights to learn the training set. The notion
of closeness on the training set T is typically formalized
through an error function of the form

()∑
=

−=
n

i
ii tyE

1

2 (2)

where iy is the network output.

2.1 Multi-Layer Perceptron
A multilayer perceptron (MLP) is shown in Figure 1 is the
most widely used feed-forward neural networks and one
of the most popular training algorithms for feed-forward
neural networks is the back-propagation algorithm. The
back-propagation learning algorithm is developed for
multilayer perceptrons is a form of gradient descent. As
such, it is vulnerable to local minima in weight space. A
number of techniques for forcing back-propagation
networks out of a local minimum have been proposed in
the literature. One of the simplest is adding a momentum

term to the back-propagation formula, which adds an
additional vector to the current weight update. Other
schemes include the Newton's method, or conjugate
gradient algorithms [8]. As shown in Figure 1, the feed-
forward neural network architecture consists of a number
of elements called neurons. These neurons are grouped
together to form a layer. Each neuron has a number of
inputs and a single output. Each input has an assigned
factor or parameter called the weight.

Figure 1, the multi-layer perceptron neural networks structure

The back-propagation training algorithm is an iterative
gradient descent algorithm designed to minimize the mean
square error E between the actual output of a multilayer
feed forward perceptron and the desired output and
updates the weights by moving them along the gradient-
descendent direction. This can be summarized with the
expression

Ew ∇−=Δ η (3)

where the parameter 0>η is the learning rate that controls
the learning speed. From Equation (3) it is clear that the
error function to be minimized is a highly nonlinear high
dimensional surface (the dimension given by the number
of weights in the network) with possibly many local
minima. Though a gradient descent algorithm is fast, it
does not guarantee that the minimum found is the global
one.

2.2. Radial Basis Function Neural Network
Radial Basis functions are used for strict interpolation in a
multi dimensional space. Radial Basis networks [8, 6]
typically have two distinct layers as shown in Figure 2.
Each layer is fully connected to the following one and the
hidden layer is composed of a number of nodes with radial
activation functions called radial basis functions each of
which is a function of the distance between an input
pattern and a prototype pattern. Each of the input
components feeds forward to the radial functions. The
outputs of these functions are linearly combined with
weights into the network output. Each radial function has
a local response (opposite to the global response of
sigmoid function) since their output only depends on the
distance of the input from a center point. A standard
choice of basis function is the Gaussian:

ICGST-AIML Journal, ISSN: 1687-4846, Volume 8, Issue II, September 2008

2

()
⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧ −
−=

2

2

2σ

μ
φ

j
j

x
expx (4)

Figure 2. RBFN configuration

where x is an input pattern, jφ is a radial basis function

centered at location jμ .The right layer is a simple linear
discriminate that outputs a weighted sum of the basis
functions. The equation for a single output ky is:

() () 0
1

2

kj

J

j
kjk wxwxy +∑=

=
φ (5)

The hidden layer performs a nonlinear transform of the
input, and the output layer is a linear combiner mapping
the nonlinearity into a new space. The biases of the output
layer neurons can be modeled by an additional neuron in
the hidden layer, which has a constant activation
function () 1=xjφ . The degree of accuracy of these RBF
networks can be controlled by three parameters: the
number of basis functions used, their location and their
width. The training of the RBF network is radically
different from the classical training of standard MLP. In
RBFN networks with the chosen type of radial basis
function, training resolves itself into selecting the centers
and dimensions of the functions and calculating the
weights of the output neuron. The number of hidden layer
neurons can be determined through iteratively adding
neurons until the network error falls under a certain
training error goal. Radial basis transfer functions by
nature tend to cover a local portion of the input spectrum
thus having better focus on local details.

2.3. Elman Recurrent Neural Networks
In feed-forward neural networks there are no feedbacks
from the output of one layer to the inputs of the same
layer (i.e. no interconnection between the nodes within the
same layer) or earlier layers of nodes. Also, these
networks have no memory (i.e. the input vector at any
time instant determines the output, assuming the weights
do not vary). A recurrent neural network is different from
the feed-forward neural network because it has feedback
connections. Similar to the use of feedback in control
systems, recurrent neural networks take into consideration
the dynamic behavior of systems. The output of a node at

any time instant t depends on its inputs at time instant t
and those feedback connections whose values are a time
instant earlier ()tt Δ− , where tΔ is the sampling time. As
the current output of the recurrent neural network depends
on both current and prior inputs, recurrent networks
function behave just like memories which have stored
values. Elman neural network [8], is a partial recurrent
network model which has a number of context nodes in
the input layer as shown in Figure 3. The context nodes do
nothing more than duplicate the activity of a hidden layer,
at the previous time step, at the input of the network. The
Elman network commonly is a two-layer network with
feedback from the first-layer output to the first layer input.

Figure 3. Structure of Elman recurrent neural network

The advantage of Elman networks over fully recurrent
networks is that back propagation [23] is used to train the
network while this is not possible with other recurrent
networks where the training algorithms are more complex
and therefore slower.

2.4 Fuzzy Neural Network
Neuro-fuzzy models are hybrids of artificial neural
networks and fuzzy logic. The adaptive network based
fuzzy inference system (ANFIS) is a fuzzy inference
system executed in an adaptive network and it can
establish an input-output relation through the back-
propagation process with an artificial intelligence style (if-
then rules of fuzzy inference). ANFIS is a hybrid of two
intelligent system models. It combines the low-level
computational power of a neural network with the high-
level reasoning capability of a fuzzy inference system. In
the aspect of modeling, ANFIS can easily establish non-
linear functions and it can forecast time sequence of no
qualitative relations. The easiest way to understand how
the ANFIS model operates is to consider it in two steps.
First, the system is trained in a similar way to a neural
network with a large set of input data. Then, once trained,
the system operates exactly as a fuzzy expert system. The
ANFIS are fuzzy Sugeno models put in the framework of
adaptive systems to facilitate learning and adaptation [11].
Such framework makes such models systematic and less
relying on expert knowledge. To describe the ANFIS
architecture briefly, consider two fuzzy if-then rules based
on a first order Sugeno model:

ICGST-AIML Journal, ISSN: 1687-4846, Volume 8, Issue II, September 2008

3

Rule 1: IF (x is A1) and (y is B1) THEN (f1 = p1 x +q1 y + r1)
Rule 2: IF (x is A2) and (y is B2) THEN (f2 = p2 x +q2 y + r2)

where x and y are inputs; Ai and Bi are appropriate fuzzy
sets; p1, q1, and r1 are certain parameters. f1 and f2
contribute to the output of the system. The fuzzy inference
system has, for example, two inputs, one output, five
layers of framework (shown in Figure 4), and two learning
stages. In the first layer (input layer), the input variables
are mapped into fuzzy sets to estimate their degrees of
membership by the designated membership functions. At
the second layer (rule layer), the perquisite conditions of
fuzzy logic rules are matched with input variables in order
to obtain the weights, i.e., firing strength, of the rules
which are the multiplication results of all inputs by using
T-norm multiplication operation. At the normalization
layer (the third layer), the relative ratios of weights of all
rules are calculated for the nodes in this layer. Then, the
relative weights are multiplied by the functions of factor
sets at the conclusion inference layer (the fourth layer). At
the last and fifth layer (output layer), all the information
from the previous layer is aggregated to calculate output
variable, just like the procedure of defuzzification. From
the calculation of the five layers, it is clear that the
function of ANFIS is similar to that of Sugeno model.

Figure 4.The framework of adaptive network based fuzzy
inference system (ANFIS).

ANFIS learns using a hybrid learning algorithm
combining a least-squares estimator and the gradient
descent method [10]. Firstly, initial activation functions
are randomly assigned to each neuron such that the range
is spread across the domain of the input and the widths of
the fuzzy sets are large enough to allow suitable overlap.
Then the training begins and each epoch (training run)
consists of a forward pass and a backward pass, updating
the synaptic links according to the input data and desired
result. The forward pass adjusts the neuron consequents,
layer-by-layer, to minimize the error. Once it has reached
the output of the last layer, the backward pass begins and
the antecedents are updated as the consequents are held
constant.

3. Data Set
The DACS Services at the Department of Defense
(D.O.D.) Software Information Clearinghouse provides an

authoritative source for the state of the art software
information, supplying technical support for the software
community. John Musa of Bell Telephone Laboratories
compiled a software reliability database. His objective
was to collect failure interval data to assist software
managers in monitoring test status, predicting schedules
and to assist software researchers in validating software
reliability models [18]. These models are applied in the
discipline of Software Reliability Engineering. The dataset
consists of software failure data on 16 projects. Careful
controls were employed during data collection to ensure
that the data would be of high quality. The data was
collected throughout the mid 1970s. It represents projects
from a variety of applications including real time
command and control, word processing, commercial, and
military applications. In our paper, we used data from one
project, the .Real-Time Control project.

4. Experiment Setup
4.1. Test/Debug data for Real-Time Control
Observation of data for test/debug of a program for real-
time control was used. The size of the program is 870
kilo-steps of FORTRAN and a middle level language.
Since the test data is recorded day by day, the test
operations performed in a day are regarded to be a test
instance. The trainings accomplish for different models by
dividing the data set into two sections, training and test
sets, comprising of 70% and 30% of the total data set
respectively. For real-time and control case study, we took
the first 96 data points for training and the next 40 points
for prediction/ validation of the developed model.

4.2. Connectionist Models Structures
We implemented the connectionist models using
MATLAB where the architecture of the MLP neural
networks used for software reliability prediction consists
of an input layer, one hidden layer, and an output layer.
The input layer contains a number of neurons equal to the
number of delayed measurements allowed to build neural
networks model. In our case, there are four inputs to the
network, they are ()1−ky , ()2−ky , ()3−ky , and
()4−ky . Where ()1−ky the observed faults one-day is

before the current day, the hidden layer consists of 4
nodes. The output layer consists of one output neuron
producing the estimated value of the fault. The hidden
layer and output layer nodes have tanh-sigmoidal
activation function and learning rate is 0.002. The structure
of Elman network has the same architecture of MLP.
Similarly, the RBFN has the same architecture with σ =
4000 and hidden layer activation functions are Gaussian
function and output layer nodes have linear activation
functions. The structure of the ANFIS model consists of a
Sugeno type fuzzy system with generalized bell input
membership functions and a linear output membership
function. The network consists of 4 inputs, each with 3
input membership functions, 12 rules and 1 output
membership function. The training for these models was
terminated after 20 epochs.

ICGST-AIML Journal, ISSN: 1687-4846, Volume 8, Issue II, September 2008

4

5.3. Evaluation Criteria
We used an evaluation criterion for each developed model
to measure its performance. The criterion of evaluation
(i.e. performance) to measure the performance of the
developed connectionist model was defined as the sum of
the square of the error:

∑ −=
=

n

k
kyky

n 1

2))(~)((1RMSE (6)

Where)(ky is the observed fault and)(~ ky is the
predicted fault for the given model structure and N
represents the number of measurements used for
estimating the model.

5. Experimental Results
This section demonstrated the results of the different
connectionist learning algorithms runs, which explore
various aspects of specification connectionist modeling
methodology For each learning algorithms run, the best
model is evaluated over the training and test set using
prediction performance measurements. The training data
from real time control and their predicted results from
different model are shown in Figure 5 and the predicted
absolute error in Figure 6. The forecasted and actually
measured values where compared to verify the generated
models and their predictability and generalization
capability in Table 1.

Table 1- the comparison among different connectionist models
for training/test data set

 RMSE
Training Data Test Data

MLP 0.6061 0.6677
RBFN 1.6465 0.1591
Elman 0.1625 0.1394
ANFIS 1.3364 0.9079

As shown in Table 1, the recurrent network give the
minimum error in training and test data set due taking into
consideration the dynamic behavior of systems. The MLP
model have less training error and high testing error in
comparison with RBFN due its generalization capability.
Finally, although, we have conducted several experiments,
the ANFIS have the high training and test error with
respect to other learning algorithms. Comparing their
performance using the execution time of each method, we
have found that the RBFN takes the minimum time and
the ANFIS takes the maximum execution time.

Table 2- the comparison of execution time among different
connectionist models for training/test data set

 Execution Time in Seconds

MLP 2.14063
RBFN 0.89062
Elman 2.26563
ANFIS 12.7344

Figure 5: Actual and estimated faults for real time and control application for different models on training data set

ICGST-AIML Journal, ISSN: 1687-4846, Volume 8, Issue II, September 2008

5

Figure 6: Predicted absolute error for real time and control application training set.

Figure 7: Actual and estimated faults for real time and control application for different models on testing data set

ICGST-AIML Journal, ISSN: 1687-4846, Volume 8, Issue II, September 2008

6

Figure 8: Predicted absolute error for real time and control application testing data set.

6. Conclusions and Future Work
In this paper, we demonstrate the results of utilizing the
connectionist modeling and learning algorithms for
prediction the software reliability. The demonstration
includes a comparison of the four connectionist models
with different leaning algorithms or structures. The Elman
recurrent neural networks is a robust technique for
function prediction due capturing the dynamic behavior of
the data set. The preliminary computational results in the
MATLAB environment seem quite promising and give
insight into the generalization capability of these models.
In the future work, we can explore other soft computing
techniques and other different data set.

Acknowledgement
The authors would like to thanks Taif University and King
Faisal University for their support. Moreover they are
grateful for Dr. M. El-Telbany from Electronics Research
Institute, Egypt for reviewing the paper and his valuable
comments.

Bibliography
[1] Aljahdali, S. “Prediction of Software Reliability

Using Neural Network and Fuzzy logic”, Ph.D.
Dissertation presented to the faculty of College of
Graduate Studies., Dept. of the Software
Engineering and Info. System, George Mason
University, Fairfax, Virginia, U.S.A, May 2003.

[2] Aljahdali S., and El-Telbany M., “Genetic
Algorithms for Optimizing Ensemble of Models in
Software Reliability Prediction”, In the

International Journal on Artificial Intelligence and
Machine Learning (AIML), V8, ICGST, 2008.

[3] Aljahdali, S., Sheta, A., and Habib, M. "Software
Reliability Analysis Using Parametric and Non-
Parametric Methods”, Proceedings of the ISCA 18th
International Conference on Computers and their
Application, March 26-28, 2003, pp. 63-66.

[4] Aljahdali, S., Sheta, A., and Rine, D., “Predicting
Accumulated Faults in Software Using Radial Basis
Function Network”, Proceedings of the ISCA 17th
International Conference on Computers and their
Application, 4-6, April 2002, pp. 26-29.

[5] Aljahdali, S., Sheta, A., and Rine, D., “Prediction
of Software Reliability: A Comparison between
regression and neural network non-parametric
Models”, Proceeding of the IEEE/ACS Conference,
pp.470-471, 2000.

[6] Demuth H., and Beale M., MATLAB, Neural
Network Toolbox, version 4.0, 2004.

[7] Ganesan K., Khoshgoftaar T.M., and Allen E.B,“
Case based Software quality prediction”,
International Journal of Software Engineering and
Knowledge Engineering, 9(6), 1999.

[8] Haykin S., Neural networks: A Comprehensive
Foundation, Prentice Hall, 1999.

[9] Hu Q., Xie M., and Ng S., Software Reliability
Predictions using Artificial Neural Networks,
Computational Intelligence in Reliability
Engineering (SCI) 40, 197–222, 2007.

[10] Jang, J-S.R and Mizutani, C-T., Neuro-Fuzzy and
Soft Computing: A Computational Approach to

ICGST-AIML Journal, ISSN: 1687-4846, Volume 8, Issue II, September 2008

7

Learning and Machine Intelligence. Eaglewood
Cliffs, NJ: Prentice Hall, 1997.

[11] Jang, J-S.R. and Sun, C-T. “Neuro-fuzzy Modelling
and Control” Proceedings of IEEE, 83 (3) (1995)
378-406.

[12] Karunanithi N., Whitley D., and Malaiya Y.,
Prediction of software reliability using
connectionist models. IEEE Transactions on
Software Engineering 18(7) pp. 563-574, 1992.

[13] Khoshgoftaar T.M., Pandya A.S., and Lanning,
D.L., “Application of Neural Networks for
Predicting Faults”, Annals of Software
Engineering, 1:141-154, 1995.

[14] Khoshgoftaar T.M., and Allen, E.B., “Logistic
Regression Modeling of Software Quality”,
International Journal of Reliability, Quality and
Safety Engineering, 6(4), 1999.

[15] Khoshgoftaar T.M., Allen E.B, Jones W.D., and
Hudepohl, J.P., “Which Software modules have
faults that will be discovered by Customers?”
Journal of Software Maintenance: Research and
Practice, 11(1):1-18, 1996.

[16] Liang T., Afzel, N. “Evolutionary neural network
modeling for software cumulative failure time
prediction”, Journal of Reliability Engineering and
System Safety, vol.87, pp. 45–51, 2005.

[17] Liang T., Afzel, N. “On-line prediction of software
reliability using an evolutionary” connectionist
model”, Journal of Systems and Software, vol. 77,
pp. 173–180, 2005.

[18] Musa, D. J. “Software Reliability Engineering:
More Reliable Software Faster and Cheaper”
Author house, Indiana, 2004.

[19] Srinivasan, K., and Fisher, D., “Machine learning
approaches to estimating software development
effort”, IEEE Trans, Software Engineering, pp.126-
137, 1995.

[20] Stewart, W., “Collinearity and least squares
regression”, Statistical Science, pp. 68-100, 1987.

[21] Tian, J, “Better Reliability Assessment and
Prediction through Data Clustering”, IEEE
Transactions on Software Engineering, 28(10),
2002.

[22] Tian, J, “Software Quality Engineering”, John
Wiley and Sons Inc. 2005.

[23] Werbos, P.J. “Beyond Regression: New Tools for
Prediction and Analysis in the Behavioral
Sciences”, PhD Thesis. Harvard University, 1974.

Sultan Hamadi Aljahdali, Ph.D.
received the B.S from Winona State
University, Winona, Minnesota in 1992,
and M.S. with honor from Minnesota
State University, Mankato, Minnesota,
1996, and Ph.D. Information Technology
from George Mason University, Fairfax,
Virginia, U.S.A, 2003. He is an associate
dean of the college of computers and

information systems at Taif University. His research
interest includes software testing, developing software
reliability models, soft computing for software
engineering, computer security, reverse engineering, and
medical imaging, also he is a member of ACM, IEEE, and
ISCA.

Khalid A. Buragga is an Assistant
Professor of Information Systems
department in the college of Computer
Sciences and Information Technology at
King Faisal University, Hofuf, Saudi
Arabia. He received his B.Sc. in
Computer Information Systems from

King Faisal University. And, he received his M.Sc. in
Computer Information Systems from University of Miami,
USA, and a Ph.D. in Information Technology from
George Mason University, USA. His research interests
include Software Design, Software Development,
Software Quality, Software Reliability, E-Commerce and
Web development, Business Process Re-engineering, and
Integrating Systems.

ICGST-AIML Journal, ISSN: 1687-4846, Volume 8, Issue II, September 2008

8

